Meshless Methods for Partial Differential－Algebraic Equations
中国右油大学相
CHINA UNIVERSITY OF PETROLEUM

Wendi $\mathrm{Bao}^{1,2}$ ，Yongzhong Song ${ }^{3}$ ，Huaiping Zhu ${ }^{2}$

1 Department of Computation Mathematics，College of Science，China University of Petroleum，Qingdao 266580，P．R．China
2 Department of Mathematics and Statistics，York University，Toronto M3J 1P3，Canada
3 Jiangsu Key Laboratory for NSLSCS，Institute of Mathematics，Department of Information \＆Computational Sciences， School of Mathematical Sciences，Nanjing Normal University，Nanjing 210097，P．R．China

Problem

PDAEs occurs frequently in various applications in mathematical modeling， physical problems，multibody mechanics，spacecraft control，and incompressible fluid dynamics．

Index analysis of the PDAEs with respect to time index，spatial index are investigated．There are few new numerical methods proposed for PDAEs

A big obstacle for the meshless collocation method is that the companion matrix is generally ill－conditioned，nonsymmetric and full dense matrix，which constrains the applicability of the method to solve large scale problems．

Multiquadric quasi－interpolation，one of meshless methods， possesses some advantages compared with other approaches，such as less computation complexity，better shape－preserving properties．

To circumvent the ill－conditioned companion matrices in the meshless collocation methods with RBFs and the complexity of PDAEs，this paper is devoted to the numerical solution of PDAEs using the multiquadric quasi－ interpolation methods．

Problem：Consider the linear PDAEs with coefficients of the form

$$
\begin{aligned}
& A \frac{\partial U(x, t)}{\partial t}+B \frac{\partial^{2} U(x, t)}{\partial x^{2}}+C \frac{\partial U(x, t)}{\partial x}+D U(x, t)=f(x, t), x \in(\mathrm{a}, \mathrm{~b}), t \in\left(t_{0}, T\right] \\
& E U(x, t)+F \frac{\partial U(x, t)}{\partial v}=g(x, t), x \in \Gamma, t \in\left[t_{0}, T\right], \\
& U\left(x, t_{0}\right)=U_{0}(x), x \in(\mathrm{a}, \mathrm{~b})
\end{aligned}
$$

 E, F are known constant matrices，$g(x, t):\left[t_{0}, T\right] \times[a, b] \in R^{m}$ and U_{0} are known functions

Here we focus our attention on the case when at least one of the matrices A and B is singular．The two special cases when $A=0$ or $B=C=0$ lead to ordinary differential equations（ODEs）or differential algebraic equations（DAEs） which are not considered here．Therefore，in this paper we assume that $A \neq 0$ and at least one of the matrices A and B is not a zero matrix．

Methods

＊Quasi－interpolation scheme（ICN－QIE）：

－First step：approximate the time derivative of the partial differential operator by a forward difference using Crank－Nicolson method，i．e．，
$\left[A+\alpha D+\alpha\left(B \frac{\partial^{2}}{\partial x^{2}}+C \frac{\partial}{\partial x}\right)\right] U^{n+1}=\left[A-\beta D+\beta\left(-B \frac{\partial^{2}}{\partial x^{2}}-C \frac{\partial}{\partial x}\right)\right] U^{n}+\alpha f^{n+1}(x)+\beta f^{n}(x)$, where $\alpha=\Delta t \theta(0<\theta \leq 1), t_{m}=t_{n-1}+\Delta t, \beta=(1-\theta) \Delta t$ and $U^{n}=U\left(x, t_{n}\right), f^{n}=f\left(x, t_{n}\right)$ with Δt is the time step size．
－Second step：approximate U^{n} by

$$
U^{n}(x)=\left[\begin{array}{c}
U_{1}^{n} \\
U_{2}^{n} \\
\vdots \\
U_{m}^{n}
\end{array}\right] \cong\left[\begin{array}{c}
\left(L_{\varepsilon} U_{1}^{n}\right)(x) \\
\left(L_{\varepsilon} U_{2}^{n}\right)(x) \\
\vdots \\
\left(L_{\varepsilon} U_{m}^{n}\right)(x)
\end{array}\right]:=\left(L_{\varepsilon} U^{n}\right)(x),
$$

where $\left(L_{s} U_{i}^{n}\right)(x)=\sum_{i=6}^{N-5}\left(u_{i, j}^{n}-P_{i}^{n}\left(x_{j}\right)\right) \cdot \Psi_{i, j}(x)+P_{i}^{n}(x), 1 \leq i \leq m$ ，with $u_{i, j}^{n}$ is the approximation of the i th component of $U(x, t)$ at point $\left(x_{j}, t_{n}\right)$ ，and
$\Psi_{i, j}(x)=\frac{\Phi_{i, j+1}(x)-\Phi_{i, j}(x)}{2\left(x_{j+1}-x_{j}\right)}-\frac{\Phi_{i, j}(x)-\Phi_{i, j-1}(x)}{2\left(x_{j}-x_{j-1}\right)}, 1 \leq i \leq m, 3 \leq j \leq N-2$,
$\Phi_{i, j}(x)=\sqrt{\left(x-x_{j}\right)^{2}+c_{i, j}^{2}}, \quad c_{i, j}$ is a positive constant，
$P_{i}^{n}(x)=\left[\begin{array}{llll}a_{10, i}^{n} & a_{9, i}^{n} & \cdots & a_{1, i}^{n}\end{array}\right]\left[\begin{array}{llll}x^{9} & x^{8} & \cdots & 1\end{array}\right]^{T}, 1 \leq i \leq m, n=1,2,$.
is a ninth－degree polynomial such that
$P_{i}^{n}\left(x_{1}\right)=u_{i, 1}^{n}, \quad P_{i}^{n}\left(x_{N}\right)=u_{i, N}^{n}$,
$P_{i}^{n}\left(x_{2}\right)=u_{i 2}^{n}, \quad P_{i}^{n}\left(x_{N_{-1}}\right)=u_{i n}^{n}$
$P_{i}^{n}\left(x_{3}\right)=u_{i, 3}^{n}, \quad P_{i}^{n}\left(x_{N-2}\right)=u_{i, N-2}^{n}, 1 \leq i \leq m$.
$P_{i}^{n}\left(x_{4}\right)=u_{i, 4}^{n}, \quad P_{i}^{n}\left(x_{N-3}\right)=u_{n}^{n}$,
$P_{i}^{\prime}\left(x_{4}\right)=u_{i, 4}, P_{i}\left(x_{N-3}\right) u_{i, N-3}$,
$P^{n}\left(x_{5}\right)=u_{i,}^{n}$
$P^{n}\left(x_{N-3}\right)=u_{i}^{n}$
Third step：determine $u_{i, j}^{n}, i=1, \cdots, m, j=1, \cdots, N$ ，the collocation method is applied at every point $x_{i}, j=1, \cdots, N$ ．

Remark：When the shape parameter $c_{i, j} \equiv c$ ，where c is a constant，we get the ICN－QID method

Numerical experiment

＊Example：Consider the PDAEs（1）with $a=-1, b=1$ and

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), D=\left(\begin{array}{ll}
1 & 1 \\
1 & r
\end{array}\right),
$$

The shape parameters for all the calculations performed in this paper are determined by trial and error，expect in ICN－QIE $\left(c=0.1 h^{1 / 3}\right)$ ．E is a proper identity matrix and C, F are zero matrices．The right hand side functions U_{0}, f, g are chosen such that the exact solution is given by

$$
U(x, t)=\binom{U_{1}(x, t)}{U_{2}(x, t)}:=\binom{\left(x^{2}-1\right) \cos (\pi t)}{x(1-x) e^{-t}} .
$$

＊Non－regular collocation points：$\left(x_{i}, t_{j}\right)$ with $x_{i}(i=1,2, \cdots, 41)$

$x_{i}=-1,-0.9530,-0.90,-0.8530,-0.80,-0.75,-0.70,-0.64,-0.60,-0.55$ $-0.50,-0.46,-0.40,-0.35,-0.30,-0.25,-0.20,-0.18,-0.10,-0.05,0$ ， $0.05,0.08,0.15,0.20,0.24,0.32,0.35,0.41,0.45,0.50,0.53,0.60,0.65$ ， $0.70,0.7570,0.8110,0.8560,0.91,0.94,1$ ．

Index－1：$r=4$ ．

Fig． 1 Comparison of the condition numbers and the root mean square errors by the different schemes with non－regular points，where $\mathrm{c}=0.064, \mathrm{c}=0.1733$ in ICN－Kansa and ICN－CM，respectively

Index－2：$\quad r=-\frac{4}{h^{2}} \sin ^{2}\left(\frac{\pi h}{4}\right)$ and $\quad U(x, t)=\binom{U_{1}(x, t)}{U_{2}(x, t)}:=\binom{x^{5}\left(x^{2}-1\right) \cos (\pi t)}{x^{2}\left(x^{2}-1\right) e^{-t}}$

Fig． 2 Comparison of the absolute errors by the different schemes where ICN＿OID．（ $\mathrm{c}=0.0235$ ）and ICN＿OIE ${ }_{n c}$ are the methods with regular points，ICN $\mathrm{QDD}_{n}(\mathrm{c}=0.033$ ）is with non－regular points． Remark：In the figures，the modal index for PDAEs is defined as by Marszalek in［1］．ICN－Kansa method Refers to the implicit Crank－Nicolson with Kansa＇s method by multiquadrics as a RBF；ICN－HCM method refers
to the implicit Crank－Nicolson with the Hermite collocation method（HCM）by multiquadrics as a RBF（for details see［2］）．

Conclusions

＊Conclusions：

－ICN－QIE and ICN－QID work well with non－regular collocation points，and are better than ICN－FDM for solving PDAEs with index－2，i．e．，using the randomicity of the points chosen，we have improved the numerical solutions of the PDAEs with index－2．
By contrast with ICN－Kansa and ICN－HCM，the shape parameters of ICN－QID and ICN－QIE are easier to obtain．

＊Future work

－How to deal with the non－sparse resulting matrix coefficient？
－How to choose the appropriate collocation points for PDAEs with higher index？ How to apply the method to study the vector－borne diseases with free boundary？

References

［1］W．Marszalek，Analysis of partial differential algebraic equations，PhD Thesis， North Carolina State University，Raleigh，NC，USA， 1997
［2］A．L．Rocca，A．Hemandez and R．H．Power，Radial basis function Hermite collocation approach for the solution of time dependent convection－diffusion problems，Eng．Anal．Bound．Elem．29，（2005），359－370．

