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• PDAEs occurs frequently in various applications in mathematical  modeling, 

physical problems, multibody mechanics, spacecraft control, and 

incompressible fluid dynamics. 

 

• Index analysis of the  PDAEs with respect to time index, spatial index are 

investigated. There are few new numerical methods proposed for PDAEs.  

 

• A big obstacle for the meshless collocation method is that the companion 

matrix is generally ill-conditioned, nonsymmetric and full dense matrix, which 

constrains the applicability of the method to solve large scale problems. 

 

• Multiquadric quasi-interpolation, one of meshless methods, 

possesses some advantages compared with other approaches, such as less 

computation complexity, better shape-preserving properties. 

 

• To circumvent the ill-conditioned companion matrices in the meshless 

collocation methods with RBFs and the complexity of PDAEs, this paper is 

devoted to the numerical solution of PDAEs using the multiquadric quasi-

interpolation methods. 

  Problem: Consider the linear PDAEs with coefficients of the form 

  

 

 

 

 

 

where                                                              is the outward normal derivative, 

         are known constant matrices,                                 and      are known functions. 
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Quasi-interpolation scheme (ICN-QIE): 
 

• First step: approximate the time derivative of the partial differential operator by 

a forward difference using Crank-Nicolson method, i.e., 
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    Here we focus our attention on the case when at least one of the matrices       

      and      is singular. The two special cases when         or             lead to 

ordinary differential equations (ODEs) or differential algebraic equations (DAEs) 

which are not considered here. Therefore, in this paper we assume that           and 

at least one of the matrices     and     is not a zero matrix. 
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• Second step: approximate       by 

 

 

 

 

 

 

 where                                                                          , with        is the approximation 

 

 of the        component of           at point         ,  and  

 

 

 

 

                                                                                                                

 

    is a ninth-degree polynomial such that 
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• Third step: determine                                   ,  the collocation method is applied 

at every point                           
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Remark: When the shape parameter              ,  where     is a constant, we get the 

ICN-QID method . 
,i jc c c

Numerical experiment 

   where                          ,   ,               ,     ,              and                                     with      

   is the time step size. 
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1, 0.9530, 0.90, 0.8530, 0.80, 0.75, 0.70, 0.64, 0.60, 0.55,

      0.50, 0.46, 0.40, 0.35, 0.30, 0.25, 0.20, 0.18, 0.10, 0.05, 0,

         0.05, 0.08, 0.15, 0.20, 0.24, 0.32, 0.35, 0.41, 0.45, 0.50, 0.53, 0.60
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, 0.65,

         0.70, 0.7570, 0.8110, 0.8560, 0.91, 0.94,1.

Index-1:  

                                  

Index-2:                          and                                                                   .  
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Fig. 1   Comparison of the condition numbers and the root mean square errors by the different schemes 

with non-regular points, where c=0.064, c=0.1733 in ICN-Kansa and ICN-CM, respectively. 

Fig. 2 Comparison of the absolute errors by the different schemes where                 (c=0.0235)  and  

                 are the methods with regular points,                 (c=0.033)  is with non-regular points. 
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Conclusions:  

• ICN-QIE  and ICN-QID work well with non-regular collocation points, and are 

better than ICN-FDM for solving PDAEs with index-2 , i.e., using the randomicity 

of the points chosen, we have improved the numerical solutions of the PDAEs with 

index-2. 

• By contrast with ICN-Kansa and ICN-HCM, the shape parameters of ICN-QID 

and ICN-QIE are easier to obtain. 

Future work: 

•  How to deal with the non-sparse resulting matrix coefficient? 

•  How to choose the appropriate collocation points for PDAEs with higher index? 

•  How to apply the method to study the vector-borne diseases with free boundary? 

Remark: In the figures, the  modal index for PDAEs is defined as by Marszalek  in [1]. ICN-Kansa method 

refers to the implicit Crank-Nicolson with Kansa's method by multiquadrics as a RBF; ICN-HCM method refers 

to the implicit Crank-Nicolson with the Hermite collocation method (HCM) by multiquadrics as a RBF (for 

details see  [2]). 

 

Example:  Consider the PDAEs  (1)  with                      and 

 

 

 

 

  The shape parameters for all the calculations performed in this paper are  

  determined  by trial and error, expect in ICN-QIE                         is a proper  

  identity matrix and          are zero matrices. The right hand side functions             

                are chosen such that the exact solution is given by                 
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Non-regular collocation points:          with  
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